
DESIGN: FURTHER EXPLORATIONS 

Robert F. Boruch and Leroy Wolins 
American Council on Education Iowa State University 

Campbell (1965) has loosely defined quasi - 
experimental design as the application of the ex- 
perimental ,mode of analysis to behavioral science 

situátionstwhich do not meet complete requirements 
of classical experimental control or design. He 

has focused primarily on inference problems as- 

sociated with nonrandom assignment of experiment- 
al units to treatments. Other examinations of 
the quasi -experimental paradigm in the behavioral 
sciences have taken the form of analytic concern 

with relaxation of constraints in classical design 
models, and augmentation of common analyses to 

assay or compensate for deviations from classical 
assumptions. Such research has resulted in some 

interesting information about the relations be- 
tween experimental classificatory models and the 
factor analytic models more commonly used by 
social scientist. For example, Gollob (1968) has 
presented a method of examing data which is based 
on a two -way (mixed) analysis of variance model 
in order to account for correlated error. The 

usual analytic procedure is augmented by a prin- 
cipal components representation of matrix of 
interaction parameters. Bock and Bargmann (1966) 
have conducted research which is based on system- 
atic variation of the general factor analysis 
model. Structural characteristics of some models 
are related to the usual experimental designs. 
Maximum likelihood rather than least squares tech- 
niques are used to estimate parameters in this 
case, however. 

In this paper, we snall limit consideration 
to deriving a general relation between a mixed 
classificatory model with fewer constraints and 
a restricted factor analytic model. Demonstration 
and evaluation of the model usage is based on 
simulated data. 

Consider now the situation characterized by 
the following attributes: (a) A mixed analysis 
of variance model is with random main effect 
hypothesized, but alternative models (with fewer 
classical restrictions) are plausible; (b) Primary 

interest lies in the random main effects and inter- 

actions, rather than in the fixed effects. 
These conditions are rather common in psy- 

chological and educational research. Students 
are frequently the random effect, and treatments 
or blocking attributes can be interpreted as the 
fixed effects. Insofar as fixed effect scales 

arse arbitrary in the social sciences, there is 
often little justification for examining absolute 
values of scale scores. Rather, the interaction 
of student and score are most informative to the 

investigator. 
The classical model and assumptions are 

given in equation (1) of the Appendix: a three - 
way ANOV representation with a random main effect. 
Sources of variance involving the random effects 
and random interactions can be examined conve- 
niently by obtaining a covariance matrix in which 
the summation is taken over the random effect 
(subscript i). Assuming that the sample is large 

and using the assumptions indicated, the expected 
covariances can be condensed to expression (5). 

Multipliers of the variance terms are Kronecker 
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deltas. 

If the fixed effect scales are arbitrary, 
one can equate the averages to some constant 
value so that fixed main effects and the fixed 
interaction are unaffected by the procedure. One 
can show that adjustment of the observed scores, 

Yijk to yijk, does not alter expected values of 
the covariances (Stanley, 1961). 

Suppose we now relax the assumption of unit 
weighting of each random effect in this model. 
Instead, the factors can be weighted differential- 
ly, depending on the specific jk combination (7). 

It is not unreasonaiire to conjecture that the 
weights attached to effects are a function of a 

specific treatment -block combination, for example. 
If the classical assumptions are true, the Ajk, 
Bjk, Cjkcan be interpreted as the variance com- 
ponents associated with random effects. When 
parameters are dependent on jk, the squared esti- 
mates provide something like variance components 
within a jk combination. 

Given this last equation, the substitutions 
indicated in equation (8) are made in order to 
conform to common factor analysis model notation. 
The expectation of the dispersion matrix under 
this model is given in equation (11), and matrix 
definitions are given in Appendix II for the case 
of j= 1,2,3, kI,II,III. 

This is of the form of the usual factor ana- 
lytic model considered by Lawley(1940) and others. 
It is restricted in the sense that certain factor 
structure and factor correlation matrix elements 
are constrained by the investigator to be zero, 
and the others are free and must be estimated. 

Note that the dimensions and attributes of 
the factor structure and factor correlation matrix 
are a function of the original experimental design. 
In order to assure a meaningful solution, one 
must attend to the uniqueness of the hypothesized 
factor structure. Anderson and Rubin (1956) and 
Koopmans and Riersol (1950) provide sufficient 
conditions for indentification (up to rotation) 
of the solution. For parsimonious data descrip- 
tion and for easy interpretation of results, the 
correlations among the factors (Xi, Xij,Xik) are 
usually assumed to be zero. In tliis orthogonal 
case, the matrix is an identity and the factor 
structure given is unique. 

Estimation of Parameters 
The maximum likelihood estimates of free 

parameters in the restricted factor analysis model 
can be obtained by using an extension of Lawley's 
(1940) method. Joreskog and Gruvaeus (1967) pro- 
vide detailed description of the procedure, and 
an excellent computer program for its implementa- 
tion. One can impose on the hypothesized factor 
structure and on the factor correlation matrix a 
priori constraints that certain parameters are 
exactly equal to zero. This restricted maximum 
likelihood factor analysis (RMLFA) allows the in- 
vestigator to make a large sample, Chi- square 
test for goodness of fit of the model to the data. 

The procedure recommended by Joreskog (1967) 
for evaluation of goodness of fit is a sequential 
one. After successively altering the factor 



structure hypothesized, one accepts the solution 
having the best fit at the probability level 
specified. Since the tests are conditonal, one 
knows only that the probability of the accepted 
structure being different from the true struc- 
ture is less than or equal to the specified sig- 

Joreskog further suggest random 
division of the sample into halves, using one 
half to generate a final hypothesis of interest 
in a sequential manner, and the other half to 

test the hypothesis. His recommendations refer 
largely to testing hypotheses about the number 
of factors in the unrestricted (i.e., no fixed 
elements) factor analytic model. Lacking in- 

formation to the contrary, we shall assume that 
much the same procedure is appropriate im making 
sequential decisions about modification of the 
restricted model. 

Simulation of Data 
In order to assess the utility of the model 

and of the sequential procedure described earlier, 
a pilot Monte Carlo study was initiated. The 
four basic factor structures considered are pro- 
vided in Table 1; attention is restricted to 
orthogonal structures only. 

Random floating point numbers, distributed 
NID (0,1) were generated and used as the independ- 
ent variates (i.e., factor scores) in the factor 
analytic model. Sample size is restricted to 
be 200, and number generation was accomplished 
using a computer program (Control Data 3600) de- 
veloped by Wolfe (1968). Two samples, each con- 
sisting of 200 units, comprise the validation 
sample (for a test of the final hypothesis). 
Linear functions of the random variables were 
computed on the basis of population factor load- 
ings indicated in the matrices of Table 1 and the 
model (8) given in the Appendix. Variance- covari- 
ables were derived from the resulting sample ob- 
servations. 

The generated independent random variables 
conform closely to normal curve frequencies. Chi - 
square tests of hypotheses that the variance -co- 
variance matrix for the independent varialbes is 

a sample from a population whose covariance matix 
is a diagonal results in acceptance of the null 
hypothesis. The hypothesis of independence among 
the observations (i.e., the linear combinations) 
is rejected for each generated matrix. 

The form of the population factor structure 
for synthesis of samples conforms to require- 
ments for uniqueness of the solution (Joreskog 
and Gruvaeus, 1967). Magnitudes of the factor 
loadings, and generated correlations are similar 
to those commonly obtained in analyses of psycho- 
logical data. Structures 1 and 4 were chosen be- 
cause they are suggestive of the experimental 
design situation characterized by homogeneity of 
error variance and additivity of effects. Struc- 
tures 2 and 3 are minor variations on this model. 

Results 
Models which are successively hypothesized to 

fit the data are represented by factor patterns 
given in Table 2. Each pattern matrix corres- 
ponds to a hypothesized factor structure, with 
l's representing free parameters which must be 
estimated, and 0's representing the elements 
which are restricted to be zero. For the first 
factor structure, four models were hypothesized, 
the last one (D) being the true model. Five 
models were each hypothesized to fit the data 
generated on the basis fo structures 2,3, and 4. 
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The last model (E) in each case is the true one. 
The models increase in complexity to simulate the 

investigatior's objective to obtain parsimony 
in description. 

Several attributes of any intermediate (false) 
solution warrant attention. Changes in successive 
hypothesized factor structures can be made con- 
ditional on such characteristics, in order to 
achieve a better fit of the model to data. 
Boruch and Wolins (in press) and Joreskog (1967) 
supply detailed information, including examples, 
an some of the following criteria. 

Boundary problems occur when estimates of 
parameters fall at or outside the region of allow- 
able values. Such improper solutions may be ac- 
ceptable (Joreskog, 1967). The solution is not 
a maximum likelihood solution, since partial deri- 
vatives at the solution defined by parameter esti- 
mates are not all zero. 

The size and significance of the Chi -square 
statistic, associated with maximum likelihood 
factor analysis, is an appropriate index of the 
goodness of fit in the confirmatory sense. The 
magnitude of the statistic, when used in succes- 
sive exploratory tests of hypotheses, is a conve- 
nient index for examining the goodness of fit. 
In making comparisons of successive solutions in 
which degrees of freedom.differ the computed Chi - 

square, divided by degrees of freedom, may be use- 

ful. The division allows examination of mean square 

residuals adjusted for degrees of freedom. 

If multiple independent samples are available 

and hypothesized factor structures are planned in 

advance, then the ratios of independent Chi -squares, 

divided by degrees of freedom, can be examined. 

ßther devices for summarizing the results of 
particular analysis are commonly used: examination 
of residual correlations, of consistency of an es- 
timated factor correlation matrix (in the oblique 
solution). For restricted solutions considered 
here, near zero estimates of parameters are also 
of interest. 

Consider now the summary data provided in Table 
3. Boundary problems are designated in the third 
column of the chart. In three instances (all sim- 
ilar factor structures), the limiting value of 
specific error variances was met. The hypothesized 
model was rejected on this basis. If the boundary 
condition is ignored, the magnitude of the Chi - 
square would lead to acceptance of the model. 

The Chi -square tests for false models lead ap- 
propriately to rejection of the hypothesis in all 
cases except IV (Model D), while the confirmatory 
sample test (ICV) leads to a marginal rejection. 
The ratio of the Chi- square for models C and D to 
their respective degrees of freedom is not enlight- 
ening. The adjustment for degrees of freedom fails 
to show which model might be more acceptable in an 
unambiguous way. 

The rejection of true models in independent 
tests appears to occur more frequently than one 
would expect (1 CV -Model D, 2 CV -Model E). A Type 
I error also occurs for the solution 2V -Model E. 

The rejections are marginal, but suggest that the 
probability of a Type I error may be larger than 
advertized. A tendency toward rejection of true 
solutions is part of the anecdotal rather than the 
systematic information in unrestricted factor an- 
alysis studies based on limited samples. These 
results imply that a similar problem affects tests 
on restricted models. 



Examination of the estimated factor Loading for 

each solution reveals values near zero for each 
false hypothetical model. The values occur fre- 
quently for situations in which parameters are 
hypothesized but the true factor structure does 
not contain the elements. 

The ratio of Chi -square statistic appears to 

be useful for interpretation of results. In 
general, the ratio decreases as the hypothesized 
models are successively changed to conform more 
closely to the true structure of the data. In 

the case of a comparison of Models B and C con- 
ditional on the factor structurel, for example, 
this is the case. Without rather well defined, 
systematic methods of successive testing, how- 

ever, this index of fit is not likely to be very 
useful. 

The ratios of successive Chi -square divided 
by their respective degrees of freedom are not 
appropriate for evaluation with respect to signif- 
icance levels since the successive Chi -square 
values are not independent. The ratios, however, 
are indicative of the magnitude of improvement in 
fitting two successive models. Of course, the more 
drastic changes in hypothesized factor structure 
are associated with the larger ratios. 

This cursory examination is informative in 
only a suggestive way. Although the notion of 
exploratory and confirmatory factor analytic 
techniques appears to be appropriate for an 

experimental design -like situation as described 
earlier, the actual results achieved in this small 

situation are a bit dubious. There is some evi- 
dence to suggest that the probability of accept- 
ing a true solution is somewhat larger than the 
tabulated likelihoods, at least for the structures 
considered. 

If one has no plan for sustematic alteration 
of hypothesized models, it is unlikely that suc- 
cessive tests to the true model will be as straight- 
forward as the procedures demonstrated here. With 
some such system and the use of the Chi -square 
and Chi -square /degree of freedom ratio, some 

reasonable results can be achieved. 
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TABLE 1 

Population Factor Structures 

(2) 
700 70 00 00 50 00 00 
700 70 00 00 00 40 00 
700 70 00 00 00 00 65 
700 JO 44 00 50 00 00 
700 DO 44 00 00 40 00 
700 DO 44 00 00 00 65 
700 JO 00 55 50 00 00 
700 00 55 00 40 00 
700 00 55 00 00 65 

( 3 ) ( 4 ) 

77 00 00 58 00 00 0 00 00 50 00 00 
66 00 00 00 32 00 0 00 00 00 5G 00 
71 00 00 00 00 62 0 00 00 00 00 50 
00 45 00 50 00 00 0 50 00 50 00 00 
00 49 00 00 40 00 0 50 00 00 50 00 
00 44 00 00 00 65 0 50 00 00 00 50 
00 00 58 44 00 00 0 00 70 50 00 00 
00 00 61 00 44 00 0 00 70 00 50 00 

00 47 00 00 70 00 70 00 00 50 

TABLE 2 

Factor Patterns for Sequential Testing of Models 

For Factor Structure (1): 
A B C D 

l 01 1 0 1 1 0 1 
1 0 0 1 0 0 1 1 0 1 

1 0 0 1 0 0 1 1 0 1 

0 1 0 1 1 1 1 1 

0 1 0 1 0 1 0 1 1 

0 1 0 1 0 1 1 1 

0 0 1 1 1 1 0 1 1 

0 0 1 1 0 1 1 1 

0 1 0 1 0 1 

For Factor Structures (2), (3), and (4): 

D E 

1 0 1 10010 1 0 1 0 1 0 0 1 0 0 
1 0 0 1 0 1 0 1 1 0 1 1 1 0 

0 0 1 0 1 0 0 0 0 1 0 1 1 

1 0 0 1 1 1 1 0 1 0 1 0 O 0 
1 0 1 0 0 1 1 1 1 

1 0 1 0 1 0 0 1 0 0 0 1 1 

1 1 1 0 1 1 0 0 1 1 0 0 1 

1 0 1 0 1 1 0 0 1 0 1 0 1 1 0 
1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 
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Appendix I 

Yijk u + ai + ßj + yk + + (aY)ik + + (1) 

t where 

where 

i 1,2,3, ... , N 

j 1,2,3, , b 

k 1,2,3, ... , c 

Rijk NID(O,aE) 

ai NID(O,aa) 

[(ay)ik tD(0,a2 )] 
ay 

E{(Yijk E(Y,jk))(Yij,k E(Y.j,k,))} (2) 

E(ai) 

E(ßj) 

E(yk) Yk 

jk 

E(iCijk) 

E(E(aß)ij) - 

E(E(ay)ik 

E{íYijk-E(Y.jk))(Yij,k,- E(Y.De))} 

(3) 

E{(ai + (aß)ij+ (aY)ik+ Cijk)(ai + (aß)ij,+ 

Cov(Y ,Y a2 + a2 a2 6 a2 
i ijk ij'k' a jj, aß kk' ay jj' kk' 

Yijk + + + 
Cijk 

'ijk Ajkai + Bjk(aß)ij Cjk(aY)ik + Cijk 

Ajk Bjk Cik are parameters 

(4) 

(7) 



where 

e NID(0,a k) 
ijk ejk 

NID(0,1) 

(aß)ij (ay)ik N(0,1) . 

= AjkXi 
+ BjkXij 

+ 
(8) 

i(jk) 

Pjk,j'kg= E{(Yijk 

= E{(Yijk)(Yij,k,)} 

= E{(Ajkai + Cjk(ay)ik + 

(9) 

(A., ,a + B (aß) C (ay) + e )} 
j*k' ij' j'k' ik' ij'k' 

A A +B B pBB +B C BC 

jk j'k' jk j'k' jj' jk j'k'pjk' 

C B + + (10) 

where , is, for example, the correlation between and (aß) 

iov(Yijk,Yijk) E + 

AII BII 
CII 

A21 B21 C21 

A31 0 B31 
C31 

0 

A1II 
0 C11I 0 

= 
A21I 

0 
0 

A3II1 

A2I11 

B311I 

= Diagonal matrix with non -zero entries of 
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